设a(a>0)为x的增量
则对任意实数x,一定满足x+a>x
f(x+a)-f(x)
=(x+a)^3-x^3
=x^3+3a^2x+3ax^2+a^3-x^3
=3a(x^2+ax+a^2/3)
=3a(x^2+ax+(a/2)^2+a^3/12)
=3a((x+a/2)^2+a^3/12)
=3a(x+(a/2))^2+a^3/4>0
所以对于x+a>x
f(x+a)-f(x)>0
f(x+a)>f(x)
f(x)为增函数
设a(a>0)为x的增量
则对任意实数x,一定满足x+a>x
f(x+a)-f(x)
=(x+a)^3-x^3
=x^3+3a^2x+3ax^2+a^3-x^3
=3a(x^2+ax+a^2/3)
=3a(x^2+ax+(a/2)^2+a^3/12)
=3a((x+a/2)^2+a^3/12)
=3a(x+(a/2))^2+a^3/4>0
所以对于x+a>x
f(x+a)-f(x)>0
f(x+a)>f(x)
f(x)为增函数