问一道不定积分的题目.纠结了好久

2个回答

  • 令t = 1 - cosx,dt = sinx dx = √(1 - cos²x) dx = √[1 - (1 - t)²] dx = √t√(2 - t) dx

    dx = dt/[√t√(2 - t)]

    ∫ √(1 - cosx) dx

    = ∫ √t • dt/[√t√(2 - t)]

    = ∫ dt/√(2 - t)

    = 2√(2 - t) + C

    = 2√[2 - (1 - cosx)] + C

    = 2√(1 + cosx) + C

    _________________________________________________

    ∫ √(1 - cosx) dx

    = ∫ √[2sin²(x/2)] dx

    = √2∫ |sin(x/2)| dx,|sin(x/2)|周期2π

    当x∈[4(k - 1)π,2(2k - 1)π]

    积分 = √2∫ sin(x/2) dx

    = 2√2(-cos(x/2)) + C

    = -2√2cos(x/2) + C

    当x∈[2(2k - 1)π,4kπ]

    积分 = √2∫ -sin(x/2) dx

    = -2√2(-cos(x/2)) + C

    = 2√2cos(x/2) + C