求证:cos(π/2k+1)+cos(2π/2k+1)+…+cos(2k-1)π/2k+1+cos2kπ/2k+1=0
1个回答
因为nπ/(2k+1)+(2k+1-n)π/(2k+1)=π
所以cos(nπ/(2k+1))+cos((2k+1-n)π/(2k+1))=0
对于n=1到k都成立,相加之后仍然成立
所以上式成立
相关问题
求证:【cos(kπ-α)cos(kπ+α)】/{sin【(k+1)π+α】cos【(k+1)π+α】}=-1
sin(kπ/6)=1/2sin(π/12)[cos(2k-1)π/12-cos(2k+1)π/12] 这个式子为什么相
【1】求证sin(kπ-a)cos(kπ+a)/sin[(k+1)π+a]cos[(k+1)π+a]=-1,k∈Z
(1)求{x|x=cos(kπ/2),k∈Z}∩{x|x=sin(2kπ±π/2),k∈Z}
化简[sin(k-5π)cos(-2/π-k)cos(8π-k)]/[sin(k-3π/2)sin(-k-4π)]
6cos(2kπ+π/3)-2sin(2kπ+π/6)+3tan(2kπ) k€Z
sin(2kπ-α)=cos(2kπ-α)=tan(2kπ-α)=
证明 Σcos((k/n)π)=0;k=0,1,2,...2n-1
化简 sin[(k+1)π+θ]*cos[(k+1)π-θ]/sin(kπ-θ)*cos(kπ+θ) k∈z
化简:{sin(kπ-x)cos[(k+1)π+x]}/{cos(kπ-x)sin[(k-1)π-x]} k∈Z