f(x)=3x^2-(2a+6)x+a+3
=3(x^2-(2(a+3)/3)x+((a+3)/3)^2)-((a+3)^2/3)+(a+3)
=3(x-(a+3)/3)^2-((a+3)^2/3)+(a+3)
f(x)的值域为[0,∞),所以
-((a+3)^2/3)+(a+3)>=0
(a+3)^2-3(a+3)
f(x)=3x^2-(2a+6)x+a+3
=3(x^2-(2(a+3)/3)x+((a+3)/3)^2)-((a+3)^2/3)+(a+3)
=3(x-(a+3)/3)^2-((a+3)^2/3)+(a+3)
f(x)的值域为[0,∞),所以
-((a+3)^2/3)+(a+3)>=0
(a+3)^2-3(a+3)