1.1/(1+√2)=(√2-1)/(1+√2)(1-√2)=√2-1
1/(√2+√3)=√3-√2
……
原式=√2-1+√3-√2+√4-√3+√5-√4+√6-√5=√6-1
2.原式={[√(x+1)-√(x-1)][√(x+1)-√(x-1)]/[√(x+1)+√(x-1)][√(x+1)-√(x-1)]} + {[√(x+1)+√(x-1)][√(x+1)+√(x-1)]/[√(x+1)-√(x-1)][√(x+1)+√(x-1)]}
=4x/2=2x
代入x=√5/2
原式=根号5