a1+a2+a3.+an=2的n次-1
Sn=2^n-1
Sn-1=2^(n-1)-1
an=Sn-Sn-1=2^(n-1)
a1=1
a1^2=1
a2^2=2^2
设bn=an^2
bn=2^(2n-2) bn/bn-1=4
b1=1
b1+b2+..bn=1*(1-4^n)/(1-4)=(4^n-1)/3
a1+a2+a3.+an=2的n次-1
Sn=2^n-1
Sn-1=2^(n-1)-1
an=Sn-Sn-1=2^(n-1)
a1=1
a1^2=1
a2^2=2^2
设bn=an^2
bn=2^(2n-2) bn/bn-1=4
b1=1
b1+b2+..bn=1*(1-4^n)/(1-4)=(4^n-1)/3