解题思路:(1)先对函数进行求导,根据导函数在点A处的值为切线方程的斜率可得答案.
(2)先设切点坐标,然后得出斜率的表达式求出斜率,最后根据直线的点斜式方程可得答案.
(1)∵y=2x-x3∴y'=-3x2+2
当x=1时,y'=-1
∴点A(1,1)处的切线方程为:y-1=(-1)(x-1)即:x+y-2=0
(2)设切点坐标为(m,2m-m3)
则直线斜率k=
2m−m3
m−2,
而y'=2-3m2,
整理得到:m3-3m2+2=0
m3-m2-2(m2-1)=0
m2(m-1)-2(m+1)(m-1)=0
(m-1)(m2-2m-2)=0
解得m1=1,m2=1+
3,m3=1-
3
当m=1时:k=2-3m2=-1,直线方程为y=-(x-2)=2-x;
当m=1+
3时,k=2-3m2=-10-6
3,直线方程为y=(-10-6
3)(x-2)
当m=1-
3时,k=2-3m2=-10+6
3,直线方程为y=(-10+6
点评:
本题考点: 导数的几何意义;利用导数研究曲线上某点切线方程.
考点点评: 本题主要考查导数的几何意义,即函数在某点的导数值等于过该点的曲线的切线的斜率.