已知正数数列an的前n项和为sn,满足sn^2=a1^3+.an^3.(1)求证an为等差数列,并求出通项公式

1个回答

  • 1、∵Sn^2=a1^3+a2^3+…+an^3,

    ∴Sn-1^2=a1^3+a2^3+…+a(n-1)^3,

    两式相减,得an^3=Sn^2-S(n-1)^2=(Sn-S(n-1)))(Sn+S(n-1)))=an(Sn+S(n-1)),

    ∵an>0,∴an^2=Sn+S(n-1)(n≥2),

    ∴a(n-1 )^2=S(n-1)+S(n-2()n≥2),

    两式相减,得an2-an-12 =Sn-S(n-2)=an+a(n-1),

    ∴an-a(n-1)=1(n>3),

    ∵S1^2=a1^2=a1^3,且a1>0,∴a1=1,

    S2^2=(a1+a2)^2=a1^3+a2^3,

    ∴(1+a2)^2=1+a2^3,∴a2^3-a2^2-2a2=0,

    由a2>0,得a2=2,

    ∴an-a(n-1)=1,n≥2,

    故数列{an}为等差数列,通项公式为an=n.

    2、bn=(1-1/n)^2-a(1-1/n)^2=1/n^2+(a-2)/n+1-a,

    b(n+1)-bn=(1/(n+1)-1/n)(1/(n+1)+1/n+a-2)=-[1/n(n+1)][1/(n+1)+1/n+a-2]>0

    即1/(n+1)+1/n+a-2)