圆x^2+y^2+2x+4y-3=0
(x+1)^2+(y+2)^2=8
设x=-1+2√2cosa
y=-2+2√2sina
到直线x+y+1=0的距离
d=|-2+2√2cosa+2√2sina|/√2
=|4sin(a+π/4)-2|/√2=√2
4sin(a+π/4)-2=2或 4sin(a+π/4)-2=-2
sin(a+π/4)=1 或 4sin(a+π/4)=0
a=π/4 或 a=3π/4
点的坐标为
(1,0)或(-3,0)
圆x^2+y^2+2x+4y-3=0
(x+1)^2+(y+2)^2=8
设x=-1+2√2cosa
y=-2+2√2sina
到直线x+y+1=0的距离
d=|-2+2√2cosa+2√2sina|/√2
=|4sin(a+π/4)-2|/√2=√2
4sin(a+π/4)-2=2或 4sin(a+π/4)-2=-2
sin(a+π/4)=1 或 4sin(a+π/4)=0
a=π/4 或 a=3π/4
点的坐标为
(1,0)或(-3,0)