由条件概率公式:
P(A|B) = P(AB)/P(B),P(B|A)=P(AB)/P(A),
故P(A|B)> P(A)等价于P(AB)/P(B)> P(A),
即P(AB)>P(A)P(B),
亦等价于P(AB)/P(A)>P(B),
即 P(B|A)> P(B).
由条件概率公式:
P(A|B) = P(AB)/P(B),P(B|A)=P(AB)/P(A),
故P(A|B)> P(A)等价于P(AB)/P(B)> P(A),
即P(AB)>P(A)P(B),
亦等价于P(AB)/P(A)>P(B),
即 P(B|A)> P(B).