设A,B两点坐标分别是:
A(x1,y1),B(x2,y2)
A,B两点都在椭圆上
X1^2/2+Y1^2=1 (1式)
X2^2/2+Y2^2=1 (2式)
(1式)-(2式)
(x1-x2)(x1+x2)/2=-(y1-y2)(y1+y2)
P是AB中点
(x1+x2)=2
(y1+y2)=1
AB连线即直线l斜率:k==(y1-y2)/(x1-x2)=-1
再利用点斜式求得:
直线L方程:y=-x+3/2
与椭圆X^2/2+Y^2=1联立得
6x^2-12x+5=0
x1+x2=2
x1*x2=5/6
求得|x1-x2|=根号6/3 则
弦长=|x1-x2|*根号下k^2+1
=根号6/3*根号2
=2根号3/3