已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).

1个回答

  • (1)可得f(0)•f(0)=f(0)

    ∵f(0)≠0

    ∴f(0)=1

    又对于任意 x∈R, f(x)=f(

    x

    2 +

    x

    2 )=[f(

    x

    2 ) ] 2 ≥0 又 f(

    x

    2 )≠0 ,∴f(x)>0

    (2)设x 1,x 2∈R且x 1<x 2,则f(x 1)-f(x 2)=f[(x 1-x 2)+x 2]-f(x 2)=f(x 2)[f(x 1-x 2)-1]

    ∵x 1-x 2<0

    ∴f(x 1-x 2)>f(0)=1

    ∴f(x 1-x 2)-1>0

    对f(x 2)>0

    ∴f(x 2)f[(x 1-x 2)-1]>0

    ∴f(x 1)>f(x 2)故f(x)在R上是减函数