(1)可得f(0)•f(0)=f(0)
∵f(0)≠0
∴f(0)=1
又对于任意 x∈R, f(x)=f(
x
2 +
x
2 )=[f(
x
2 ) ] 2 ≥0 又 f(
x
2 )≠0 ,∴f(x)>0
(2)设x 1,x 2∈R且x 1<x 2,则f(x 1)-f(x 2)=f[(x 1-x 2)+x 2]-f(x 2)=f(x 2)[f(x 1-x 2)-1]
∵x 1-x 2<0
∴f(x 1-x 2)>f(0)=1
∴f(x 1-x 2)-1>0
对f(x 2)>0
∴f(x 2)f[(x 1-x 2)-1]>0
∴f(x 1)>f(x 2)故f(x)在R上是减函数