作MD∥BC,交AB于D,
∴AM=DM=AD(等边△)△ADM∽△ABC,
又∵AM=BN,
∴BN=DM,
易证△DMP≌△BNP(ASA),
∴PM=PN,PD=PB,
∴PM/PN=1
(1)当n=1时(即点M是AC中点),AM=DM=BN,
∴PB=BD/2,
又AD=BD=AB/4,
∴AB/PB=4,
∴AP/BP=3
(2)当n=2时
AD/AB=AM/AC=1/3,
BD/AB=2/3,
PB/AB=1/3,
∴PB/PA=1/2,
即AP=2PB
(3)当PA=5PB时,
PB/AB=1/6,
BD/AB=1/3,
AM/MC=AD/DB=2,
∴n=1/2