∵DE⊥AC,∠ABC=90°
M是CE的中点
∴在RT△CDE和RT△CBE中
DM=1/2CE=CM
BM=1/2CE=CM
∴DM=BM
∵BM=CM
CM=DM
∴∠MDC=∠MCD
∠MBC=∠MCB
∵AB=BC
∴∠ACB=∠CAB=45°
∵∠ACB=∠MCD+∠MCB=45°
∴∠MDC+∠MBC=45°
∴∠AMC+∠DMC=180°-∠MDC-∠MCD+180°-∠MBC-∠MCB
=360°-(∠MCD+∠MCB)-(∠MDC+∠MBC)
=360°-45°-45°
=270°
∴∠BMD=360°-(∠AMC+∠DMC)=360°-270°=90°
∴BM⊥DM