(1)m=1,由an+1=
2
a2n+3an+1
an+1(n∈N*),
得:an+1=
2(an+1)(an+1)
an+1=2an+1,所以an+1+1=2(an+1),
∴{an+1}是以2为首项,公比也是2的等比例数列.
于是an+1=2•2n-1,∴an=2n-1.
(2)由an+1≥an.而a1=1,知an>0,∴
2
a2n+3an+m
an+1≥an,即m≥-an2-2an
依题意,有m≥-(an+1)2+1恒成立.∵an≥1,∴m≥-22+1=-3,即满足题意的m的取值范围是[-3,+∞).
(3)-3≤m<1时,由(2)知an+1≥an,且an>0.
设数列cn=
1
an+1,则cn+1=
1
an+1+1=
1
2
a2n+3an+m
an+1+1=
an+1
2(an+1)2+m−1,
∵m<1,即m-1<0,
故cn+1>
an+1
2(an+1)2=
1
2•
1
an+1=
1
2cn,
∴c1=
1
2,c2>
1
2c1=
1
22,c3>
1
2c2>
1
23,…,cn>
1
2cn−1>
1
2n(n≥2)
∴c1+c2+…+cn=
1
a1+1+
1
a2+1+…+
1
an+1>
1
2+
1
22+…+
1
2n=
1
2(1−
1
2n)
1−
1
2
=1−
1
2n.
即在-3≤m<1时,有
1
a1+1+
1
a2+1+…+
1
an+1≥1−
1
2n成立.