(2010•江西模拟)已知数列{an}中,a1=1,且满足递推关系an+1=2a2n+3an+man+1(n∈N*).

1个回答

  • (1)m=1,由an+1=

    2

    a2n+3an+1

    an+1(n∈N*),

    得:an+1=

    2(an+1)(an+1)

    an+1=2an+1,所以an+1+1=2(an+1),

    ∴{an+1}是以2为首项,公比也是2的等比例数列.

    于是an+1=2•2n-1,∴an=2n-1.

    (2)由an+1≥an.而a1=1,知an>0,∴

    2

    a2n+3an+m

    an+1≥an,即m≥-an2-2an

    依题意,有m≥-(an+1)2+1恒成立.∵an≥1,∴m≥-22+1=-3,即满足题意的m的取值范围是[-3,+∞).

    (3)-3≤m<1时,由(2)知an+1≥an,且an>0.

    设数列cn=

    1

    an+1,则cn+1=

    1

    an+1+1=

    1

    2

    a2n+3an+m

    an+1+1=

    an+1

    2(an+1)2+m−1,

    ∵m<1,即m-1<0,

    故cn+1>

    an+1

    2(an+1)2=

    1

    2•

    1

    an+1=

    1

    2cn,

    ∴c1=

    1

    2,c2>

    1

    2c1=

    1

    22,c3>

    1

    2c2>

    1

    23,…,cn>

    1

    2cn−1>

    1

    2n(n≥2)

    ∴c1+c2+…+cn=

    1

    a1+1+

    1

    a2+1+…+

    1

    an+1>

    1

    2+

    1

    22+…+

    1

    2n=

    1

    2(1−

    1

    2n)

    1−

    1

    2

    =1−

    1

    2n.

    即在-3≤m<1时,有

    1

    a1+1+

    1

    a2+1+…+

    1

    an+1≥1−

    1

    2n成立.