S3=a(1-q^3)/(1-q)=12
S6=a(1-q^6)/(1-q)=a(1-q^3)(1+q^3)/(1-q)=36
相除
1+q^3=3
q^3=2
带入a(1-q^3)/(1-q)=12
a/(1-q)=-12
S9=a(1-q^9)/(1-q)
=[a/(1-q)][1-(q^3)^3]
=-12*(1-8)
=84
S3=a(1-q^3)/(1-q)=12
S6=a(1-q^6)/(1-q)=a(1-q^3)(1+q^3)/(1-q)=36
相除
1+q^3=3
q^3=2
带入a(1-q^3)/(1-q)=12
a/(1-q)=-12
S9=a(1-q^9)/(1-q)
=[a/(1-q)][1-(q^3)^3]
=-12*(1-8)
=84