解题思路:(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS,即可判定:△ACD≌△BCE;
(2)首先作CM⊥AD于M,CN⊥BE于N,由△ACD≌△BCE,可证∠CAD=∠CBE,再证△ACM≌△BCN,(或证△ECN≌△DCM),可得CM=CN,即可证得CH平分∠AHE;
(3)由△ACD≌△BCE,可得∠CAD=∠CBE,继而求得∠AHB=∠ACB=α,则可求得∠CHE的度数.
(1)证明:∵∠ACB=∠DCE=α,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
CA=CB
∠ACD=∠BCE
CD=CE,
∴△ACD≌△BCE(SAS);
(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,
∵△ACD≌△BCE,
∴∠CAM=∠CBN,
在△ACM和△BCN中,
∠CAM=∠CBN
∠AMC=∠BNC=90°
AC=BC,
∴△ACM≌△BCN,
∴CM=CN,
∴CH平分∠AHE;
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠AMC=∠AMC,
∴∠AHB=∠ACB=α,
∴∠AHE=180°-α,
∴∠CHE=[1/2]∠AHE=90°-[1/2]α.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题考查了全等三角形的判定与性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.