解题思路:(1)由AB=CB,DB=EB,加上夹角为直角相等,利用SAS可得出△ABD≌△CBE,利用全等三角形的对应边相等,对应角相等可得出AD=CE,∠BAD=∠BCE,在直角三角形EBC中,两锐角互余,再由对顶角相等,得到三角形AEF中两个角互余,可得出CF垂直于AD,得证;
(2)(1)中的结论AD=CE,AD⊥CE仍然成立,理由为:由一对直角相等,都减去∠ABE,得到∠ABD=∠CBE,再由AB=BC,DB=EB,利用SAS得出△ABD≌△CBE,同(1)可得出AD=CE,AD⊥CE;
(3)结论为:AD=CE,AD⊥CE,证明方法同上.
(1)证明:如图1所示,
在△ABD和△CBE中,
AB=CB
∠ABD=∠CBE=90°
DB=EB,
∴△ABD≌△CBE(SAS),
∴AD=CE,∠BAD=∠BCE,
∵∠BCE+∠BEC=90°,∠AEF=∠BEC,
∴∠BAD+∠AEF=90°,
∴∠AFE=90°,
∴AD⊥CE;
(2)(1)中的结论AD=CE,AD⊥CE仍然成立,理由为:
证明:如图2所示,
∵∠ABC=∠DBE=90°,
∴∠ABC-∠ABE=∠DBE-∠ABE,即∠ABD=∠CBE,
在△ABD和△CBE中,
AB=CB
∠ABD=∠CBE
DB=EB
∴△ABD≌△CBE(SAS),
∴AD=CE,∠BAD=∠BCE,
∵∠BCE+∠BOC=90°,∠AOF=∠BOC,
∴∠BAD+∠AOF=90°,
∴∠AFE=90°,
∴AD⊥CE;
(3)AD=CE,AD⊥CE,理由为:
证明:如图3所示,
∵∠ABC=∠DBE=90°,
∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,
在△ABD和△CBE中,
AB=CB
∠ABD=∠CBE
DB=EB
∴△ABD≌△CBE(SAS),
∴AD=CE,∠BAD=∠BCE,
∵∠BAD+∠AMB=90°,∠AMB=∠CMF,
∴∠BCE+∠CMF=90°,
∴∠AFC=90°,
∴AD⊥CE.
点评:
本题考点: 全等三角形的判定与性质;旋转的性质.
考点点评: 此题考查了全等三角形的判定与性质,以及旋转的性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法).