以上等式成立,根据以上等式,可归纳出结论:
当n为不等于0和1的整数时,³√[n +n/(n³-1)]=n׳√[ n/(n³-1)]
证明:
³√[ n+ n/(n³-1)] 通分
=³√[ n(n³-1)/(n³-1) +n/(n³-1)]
=³√[ (n^4-n+n)/(n³-1)]
=³√[ n^4/(n³-1) ]
=n׳√[ n/(n³-1)]
以上等式成立,根据以上等式,可归纳出结论:
当n为不等于0和1的整数时,³√[n +n/(n³-1)]=n׳√[ n/(n³-1)]
证明:
³√[ n+ n/(n³-1)] 通分
=³√[ n(n³-1)/(n³-1) +n/(n³-1)]
=³√[ (n^4-n+n)/(n³-1)]
=³√[ n^4/(n³-1) ]
=n׳√[ n/(n³-1)]