原式=(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(1-1/2)+1/2^15
=[1^2-(1/2)^2](1+1/2^2)(1+1/2^4)(1+1/2^8)/(1/2)+1/2^15
=2(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^4)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^8)(1+1/2^8)+1/2^15
=2*(1-1/2^16)+1/2^15
=2-2/2^16+1/2^15
=2-1/2^15+1/2^15
=2