单调区间不是根据最小正周期得来的,而是由函数的性质得来的.
正弦函数y=sinx在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减.
于是,对于y=-sin3x ,这是一个复合函数,与y=sin3x的单调性相反,于是
令-π/2+2kπ≤3x≤π/2+2kπ得
-π/6+2kπ/3≤x≤π/6+2kπ/3
即单调减区间:[2kπ/3-π/6,2kπ/3+π/6] (k∈Z)
令π/2+2kπ≤3x≤3π/2+2kπ得
π/6+2kπ/3≤x≤π/2+2kπ/3
即单调减区间:[2kπ/3+π/6,2kπ/3+π/2] (k∈Z)
注意,都是闭区间,你的答案开区间是错误的