1:设f(x)=ax^2+bx+c
f(x)过原点,则c=0
f(x)=ax^2+bx
顶点坐标为(-b/2a,-b^2/4a^2)
得b=2a
(-1,-1)代入方程
得b=a+1
所以a=1,b=2
f(x)=x^2+2x
2:g(x)=(x^2+2x+2)/(x^2+x+1)=[﹙x^2+x+1)+x+1]/(x^2+x+1)
=1+(x+1)/(x^2+x+1)
分子分母同除(x+1)
g(x)=1+1/[x^2+x+1)/(x+1)]
设这个分母为h(x)单变它好看一点
h(x)=(x^2+x+1)/(x+1)=[x(x+1)+1]/(x+1)=x+1+1/(x+1)-1≧1
g(x)最大值为2