设A(x1,y1),B(x2,y2),M(x0,y0)
PAB直线方程为:y-4=k(x-5)
因AB在椭圆上:
4x1²+5y1²=20
4x2²+5y2²=20
两式相减:4(x1+x2)(x1-x2)=-5(y1+y2)(y1-y2)
4(x1+x2)/(y1+y2)=-5(y1-y2)/(x1-x2)=-5K
4x0/y0=-5K
y0-4=k(x0-5),
K=(y0-4)/(x0-5)
所以
4x0/y0=-5(y0-4)/(x0-5)
整理 4x/y=-5(y-4)/(x-5)
4x(x-5)+5(y-4)*y=0
4x²-20x+5y²-20y=0