∵AB=AC
∴∠B=∠C=(180°-∠BAC)/2
∵AD=AE
∴∠ADE=∠AED=(180°-∠DAE)/2
∵∠ADC=∠ADE+∠EDC=∠B+∠BAD
∴∠EDC=∠B+∠BAD-∠ADE=(180°-∠BAC)/2+∠BAD-(180°-∠DAE)/2
=∠BAD-(1/2)(∠BAC-∠DAE)=∠BAD-(1/2)∠BAD=(1/2)∠BAD=(1/2)×60°=30°
即∠EDC=30°
∵AB=AC
∴∠B=∠C=(180°-∠BAC)/2
∵AD=AE
∴∠ADE=∠AED=(180°-∠DAE)/2
∵∠ADC=∠ADE+∠EDC=∠B+∠BAD
∴∠EDC=∠B+∠BAD-∠ADE=(180°-∠BAC)/2+∠BAD-(180°-∠DAE)/2
=∠BAD-(1/2)(∠BAC-∠DAE)=∠BAD-(1/2)∠BAD=(1/2)∠BAD=(1/2)×60°=30°
即∠EDC=30°