1.|b+c|^2=(sinβ+cosβ)^2+(4cosβ-4sinβ)^2
=1+2sinβcosβ+16-32sinβcosβ
=17-15sin2β
≤17-15×(-1)
=32
|b+c|≤4√2
2.-π/6≤x≤π/2
-π/3≤2x≤π
-√3/2≤sin2≤1
-√3≤y≤12
3.f(π/8)=sin(2π/8+φ)=sin(π/4+φ)
-π
1.|b+c|^2=(sinβ+cosβ)^2+(4cosβ-4sinβ)^2
=1+2sinβcosβ+16-32sinβcosβ
=17-15sin2β
≤17-15×(-1)
=32
|b+c|≤4√2
2.-π/6≤x≤π/2
-π/3≤2x≤π
-√3/2≤sin2≤1
-√3≤y≤12
3.f(π/8)=sin(2π/8+φ)=sin(π/4+φ)
-π