已知直线l:y=kx,圆C:x 2 +y 2 -2x-2y+1=0,直线l交圆于P、Q两点,点M(0,b)满足MP⊥MQ

1个回答

  • (1)∵C:x 2+y 2-2x-2y+1=0∴b=1时,点M(0,1)在圆上.又MP⊥MQ,圆心(1,1)在直线直线l:y=kx上,故k=1

    (2)设P(x 1,y 1),Q(x 2,y 2).

    联立方程组,

    y=kx

    x 2 + y 2 -2x-2y+1=0. ⇒(1+k 2)x 2-2(1+k)x+1=0, ⇒ x 1 + x 2 =

    2(1+k)

    1+ k 2 , x 1 x 2 =

    1

    1+ k 2 .

    ∵MP⊥MQ∴

    MP •

    MQ =0 ,即x 1x 2+(y 1-b)(y 2-b)=0.

    又y 1=kx 1,y 2=kx 2,∴(1+k 2)x 1x 2-kb(x 1+x 2)+b 2=0,

    ∴ (1+ k 2 )

    1

    1+ k 2 -kb

    2(1+k)

    1+ k 2 + b 2 =0.

    当b=0时,此式不成立,

    从而 b+

    1

    b =

    2 k 2 +2k

    1+ k 2 =2+

    2(k-1)

    (k-1) 2 +2(k-1)+2 . .

    又∵k>3,令t=k-1>2,∴ b+

    1

    b =2+

    2

    t+

    2

    t +2 .

    令函数 g(t)=t+

    2

    t +2 ,当t>2时, g′(t)=1-

    2

    t 2 >0 ,g(t)>5,从而 2<b+

    1

    b <

    12

    5 .

    解此不等式,可得

    6-

    11

    5 <b<1 或 1<b<

    6+

    11

    5 .