(1)∵C:x 2+y 2-2x-2y+1=0∴b=1时,点M(0,1)在圆上.又MP⊥MQ,圆心(1,1)在直线直线l:y=kx上,故k=1
(2)设P(x 1,y 1),Q(x 2,y 2).
联立方程组,
y=kx
x 2 + y 2 -2x-2y+1=0. ⇒(1+k 2)x 2-2(1+k)x+1=0, ⇒ x 1 + x 2 =
2(1+k)
1+ k 2 , x 1 x 2 =
1
1+ k 2 .
∵MP⊥MQ∴
MP •
MQ =0 ,即x 1x 2+(y 1-b)(y 2-b)=0.
又y 1=kx 1,y 2=kx 2,∴(1+k 2)x 1x 2-kb(x 1+x 2)+b 2=0,
∴ (1+ k 2 )
1
1+ k 2 -kb
2(1+k)
1+ k 2 + b 2 =0.
当b=0时,此式不成立,
从而 b+
1
b =
2 k 2 +2k
1+ k 2 =2+
2(k-1)
(k-1) 2 +2(k-1)+2 . .
又∵k>3,令t=k-1>2,∴ b+
1
b =2+
2
t+
2
t +2 .
令函数 g(t)=t+
2
t +2 ,当t>2时, g′(t)=1-
2
t 2 >0 ,g(t)>5,从而 2<b+
1
b <
12
5 .
解此不等式,可得
6-
11
5 <b<1 或 1<b<
6+
11
5 .