解题思路:(1)由题设条件得a1=3,
a
n
=
1
4
(
a
2
n
−
a
2
n−1
)+2(
a
n
−
a
n−1
)
,由此能求出数列{an}的通项公式.
(2)由(1)知Sn=n(n+2),所以
b
n
=
1
S
n
=
1
2
(
1
n
−
1
n+2
)
,再用裂项求和法求出数列{bn}的前n项和Tn,由此能求出
lim
n→∞
Tn.
(1)由a1=S1=
1/4(a1−1)(a1+3),及an>0,得a1=3
由Sn=
1
4(an−1)(an+3)得Sn−1=
1
4(an−1−1)(an−1+3).
∴当n≥2时,an=
1
4(
a2n−
a2n−1)+2(an−an−1)
∴2(an+an-1)=(an+an-1)(an-an-1)∵an+an-1>0∴an-an-1=2,
∴{an}是以3为首项,2为公差的等差数列,∴an=2n+1
(2)由(1)知Sn=n(n+2)∴bn=
1
Sn=
1
2(
1
n−
1
n+2),
Tn=b1+b2+…+bn
=
1
2(1−
1
3+
1
2−
1
4++
1
n−1−
1
n+1+
1
n−
1
n+2)
=
1
2[
3
2−
2n+3
(n+1)(n+2)]=
3
4−
2n+3
2(n+1)(n+2)]
∴
lim
n→∞Tn=
lim
n→∞[
3
4−
2n+3
2(n+1)(n+2)]=
3
4(13分)
由
an+bn
2<0,得a1+(
点评:
本题考点: 数列的极限;等差数列的通项公式;数列的求和.
考点点评: 本题考查数列的极限和应用,解题时要认真审题,仔细解答,注意裂项求和的灵活运用.