(2010•宣武区一模)设{a}是正数数列,其前n项和Sn满足Sn=[1/4](an-1)(an+3).

1个回答

  • 解题思路:(1)由题设条件得a1=3,

    a

    n

    1

    4

    (

    a

    2

    n

    a

    2

    n−1

    )+2(

    a

    n

    a

    n−1

    )

    ,由此能求出数列{an}的通项公式.

    (2)由(1)知Sn=n(n+2),所以

    b

    n

    1

    S

    n

    1

    2

    (

    1

    n

    1

    n+2

    )

    ,再用裂项求和法求出数列{bn}的前n项和Tn,由此能求出

    lim

    n→∞

    Tn

    (1)由a1=S1=

    1/4(a1−1)(a1+3),及an>0,得a1=3

    由Sn=

    1

    4(an−1)(an+3)得Sn−1=

    1

    4(an−1−1)(an−1+3).

    ∴当n≥2时,an=

    1

    4(

    a2n−

    a2n−1)+2(an−an−1)

    ∴2(an+an-1)=(an+an-1)(an-an-1)∵an+an-1>0∴an-an-1=2,

    ∴{an}是以3为首项,2为公差的等差数列,∴an=2n+1

    (2)由(1)知Sn=n(n+2)∴bn=

    1

    Sn=

    1

    2(

    1

    n−

    1

    n+2),

    Tn=b1+b2+…+bn

    1

    2(1−

    1

    3+

    1

    2−

    1

    4++

    1

    n−1−

    1

    n+1+

    1

    n−

    1

    n+2)

    =

    1

    2[

    3

    2−

    2n+3

    (n+1)(n+2)]=

    3

    4−

    2n+3

    2(n+1)(n+2)]

    lim

    n→∞Tn=

    lim

    n→∞[

    3

    4−

    2n+3

    2(n+1)(n+2)]=

    3

    4(13分)

    an+bn

    2<0,得a1+(

    点评:

    本题考点: 数列的极限;等差数列的通项公式;数列的求和.

    考点点评: 本题考查数列的极限和应用,解题时要认真审题,仔细解答,注意裂项求和的灵活运用.