证明:
∵(a-b)³
=(a-b)(a-b)²
=(a-b) (a²-2ab+b²)
=a(a²-2ab+b²)-b(a²-2ab+b²)
=a³-2a²b+ab²-a²b+2ab²-b³
=a³-3a²b+3ab²-b³
∴(a-b)³=a³-3a²b+3ab²-b³
证明:
∵(a-b)³
=(a-b)(a-b)²
=(a-b) (a²-2ab+b²)
=a(a²-2ab+b²)-b(a²-2ab+b²)
=a³-2a²b+ab²-a²b+2ab²-b³
=a³-3a²b+3ab²-b³
∴(a-b)³=a³-3a²b+3ab²-b³