y=1/2cos^2(x)+(根号3)/2sinxcosx+1
=1/4cos2x+1/4+(根号3)/4sin2x+1
=1/2[sin(π/6)cos2x+cos(π/6)sin2x]+5/4
=1/2sin(2x+π/6)+5/4
因为sin(2x+π/6)属于[-1,1]
所以y的最大值=1/2×1+5/4=7/4.
y=1/2cos^2(x)+(根号3)/2sinxcosx+1
=1/4cos2x+1/4+(根号3)/4sin2x+1
=1/2[sin(π/6)cos2x+cos(π/6)sin2x]+5/4
=1/2sin(2x+π/6)+5/4
因为sin(2x+π/6)属于[-1,1]
所以y的最大值=1/2×1+5/4=7/4.