分析:
设招甲种工人x人,则乙种工人(150-x)人,依题意可列出不等式,求出其解集即可.
设招聘甲种工种的工人为x人,则招聘乙种工种的工人为(150-x)人,依题意得:
150-x≥2x解得:x≤50即0≤x≤50
再设每月所付的工资为y元,则
y=600x+1000(150-x)
=-400x+150000
∵-400<0,∴y随x的增大而减小
又∵0≤x≤50,∴当x=50时,∴y最小=-400×50+150000=130000(元)
∴150-x=150-50=100(人)
答:甲、乙两种工种分别招聘50,100人时,可使得每月所付的工资最少为130000元.
此题比较简单,解答此题的关键是根据题意列出不等式,再根据“招甲种工人越多,乙种工人越少,所付工资最少”即可求解.