对于一个数或域GF(p)
本原元:
设本原元为a,则a^d=1(mod p) 成立,其中d=ψ(p) ψ(p)是欧拉函数
即:a^ψ(p)=1(mod p)
欧拉函数:对于正数n,少于或等于n的数中与n互质的数的个数
例如
p=7 则 ψ(p)=6
a=2时 a³=8=1(mod 7) 但是3不是ψ(7) 所以 a不是本原元
a=3时 a^6=1(mod 7) 此时 3就是本原元
一个域的本原元非唯一
对于一个数或域GF(p)
本原元:
设本原元为a,则a^d=1(mod p) 成立,其中d=ψ(p) ψ(p)是欧拉函数
即:a^ψ(p)=1(mod p)
欧拉函数:对于正数n,少于或等于n的数中与n互质的数的个数
例如
p=7 则 ψ(p)=6
a=2时 a³=8=1(mod 7) 但是3不是ψ(7) 所以 a不是本原元
a=3时 a^6=1(mod 7) 此时 3就是本原元
一个域的本原元非唯一