c/(a+b)+b/(c+a)+a/(b+c)=c/(a+b)+1+b/(c+a)+1+a/(b+c)+1-3=(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]-3=[(a+b)+(b+c)+(a+c)][1/(a+b)+1/(b+c)+1/(c+a)]/2-3
>=[1+1+1]^2/2-3 (根据柯西不等式)
=3/2
c/(a+b)+b/(c+a)+a/(b+c)=c/(a+b)+1+b/(c+a)+1+a/(b+c)+1-3=(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]-3=[(a+b)+(b+c)+(a+c)][1/(a+b)+1/(b+c)+1/(c+a)]/2-3
>=[1+1+1]^2/2-3 (根据柯西不等式)
=3/2