﹙1﹚如果对x∈[1,3],不等式x²+2(a-2)x+4>0恒成立,求实数a的取值范围

1个回答

  • (1).f(x)=x²+2(a-2)x+4 是一个开口向上的抛物线,若在x∈[1,3]上f(x)>0恒成立,则需

    (i) 对称轴2-a1时,f(1)>0且f(3)>0,代入解得,a∈(-1/2,-1/6),由于需a>1,无解;

    (ii)对称轴2-a>3时,即a0且f(3)>0,代入解得,a∈(-1/2,-1/6),由于需a0,解得a4,由于需a∈[-1,1],因此a∈[-1,0].

    综上,如果对x∈[1,3],不等式x²+2(a-2)x+4>0恒成立,a∈[-1,0].

    (2).不等式x²-2(a-2)x+4>0在x∈[1,3]上有解,仅需 f(1)>0或f(3)>0即可,代入解得a>-1/2或a0在x∈[1,3]上有解;

    (3)令t=x²,t≥0,则x^4+ax²+1≥0转化为f(t)=t²+at+1≥0在t≥0时恒成立

    f(t)=t²+at+1为开口向上的抛物线,对称轴为t=-a/2

    (i)对称轴-a/20时,f(0)≥0,代入有0+0+1≥0,恒成立,即在a>0时,f(t)=t²+at+1≥0恒成立;

    (ii)对称轴-a/2≥0,即a≤0时,f(t)最小值1-a²/4≥0,解得a∈[-2,2],因a≤0,所以a∈[-2,0].

    综上,a≥-2时,x^4+ax²+1≥0恒成立.

    另外,第(3)题第二解法如下:

    (i)x≠0时,x²>0,不等式两边同时除以x²可得x²+a+(1/x)²≥0

    配方得(x-1/x)²+2+a≥0,由于(x-1/x)²恒大于等于0,只需2+a≥0即a≥-2即可满足(x+1/x)²-2+a≥0,亦即a≥2时,x^4+ax²+1≥0

    (ii)x=0时,原不等式化为1≥0恒成立;

    综上,a≥2时,x^4+ax²+1≥0恒成立.