已知双曲线焦点在x轴上,且过点(-√2,-√3),(1,1),求双曲线c的标准方程.怎么解,

1个回答

  • 据题意,设双曲线方程:x^2/a^2-y^2/b^2=1

    b^2x^2-a^2y^2=a^2b^2

    过(-√2,-√3)

    b^2(-√2)^2-a^2(-√3)^2=a^2b^2

    2b^2-3a^2=a^2b^2

    (2-a^2)b^2=3a^2

    b^2=3a^2/(2-a^2).(1)

    过(1,1)

    b^2*1^2-a^2*1^2=a^2b^2

    b^2-a^2=a^2b^2.(2)

    (1)代入(2):3a^2/(2-a^2)-a^2=a^2*3a^2/(2-a^2)

    3a^2-a^2(2-a^2)=3a^4

    3a^2-2a^2+a^4=3a^4

    a^2=2a^4

    1=2a^2

    a^2=1/2

    代入(1):b^2=(3*1/2)/(2-1/2)=1

    双曲线方程:x^2/(1/2)-y^2=1