设y=ax^2+bx+c
图象过(0,-1)
得到c=-1
于是y=ax^2+bx-1
图象过(-1,0)
得到a-b-1=0 (1)
又对称轴是直线X=1
于是-b/(2a)=1 (2)
解得a=1/3,b=-2/3
所以y=(1/3)x^2-(2/3)x-1
设y=ax^2+bx+c
图象过(0,-1)
得到c=-1
于是y=ax^2+bx-1
图象过(-1,0)
得到a-b-1=0 (1)
又对称轴是直线X=1
于是-b/(2a)=1 (2)
解得a=1/3,b=-2/3
所以y=(1/3)x^2-(2/3)x-1