已知函数f(x)=3sin²x+2√3sinxcosx+5cos²x.{1}求函数f【x】的周期和最

1个回答

  • 做过的原题

    f(x)=3sin^2x+2√3sinxcosx+5cos^2x

    =sin^2 x+2√3sinxcosx+3cos^2 x+2(sin^2 x+cos^2 x)

    =sin^2 x+2√3sinxcosx+(√3)^2·cos^2 x+2

    =(sinx+√3cosx)^2+2

    =[√(1^2+(√3)^2)·sin(x+arctan(√3/1)]^2+2

    =[2sin(x+π/3)]^2+2

    =4·sin^2 (x+π/3) +2

    ∵sin(x+π/3)≤1

    ∴sin^2 (x+π/3)≤1

    ∴f(x)=4·sin^2 (x+π/3) +2≤6;最大值是6.

    f(x)=4·sin^2 (x+π/3) +2

    =2·[2sin^2 (x+π/3)-1] +2 +2

    =-2·[1-2sin^2 (x+π/3)]+4

    =-2cos(2x+3π/3)+4

    则f(x)的最小正周期是2π/2=π.

    f(a)=3sin^2 a+2√3sinacosa+5cos^2 a

    =5;

    ∴3sin^2 a+2√3sinacosa=5(1-cos^2 a)=5sin^2 a;

    2√3sinacosa=2sin^2 a;

    √3sinacosa=sin^2 a;

    两边同时除以sin^2 a得

    √3/tana=1;

    ∴tana=√3.