若x1 > x2 >0
则:
f(x2 * x1/x2) = f(x2) + f(x1/x2) = f(x1)
==>f(x1) - f(x2) =f(x1/x2)
而x1>x2>0 所以:x1/x2 > 1;
所以f(x1/x2) > 0 ==> f(x1) -f(x2) > 0
单增.
原型 是对数函数.
若x1 > x2 >0
则:
f(x2 * x1/x2) = f(x2) + f(x1/x2) = f(x1)
==>f(x1) - f(x2) =f(x1/x2)
而x1>x2>0 所以:x1/x2 > 1;
所以f(x1/x2) > 0 ==> f(x1) -f(x2) > 0
单增.
原型 是对数函数.