lim[√(x+sinx)]/x
x->0
=lim[√(x+sinx)]/(√x)*(√x)
x->0
=lim[√(1+sinx/x)]/(√x)
x->0
=lim[√2]/(√x)
x->0
=∞
√x+sinx是x的低阶无穷小.
若sinx不再根号内:
lim[(√x)+sinx]/x
x→0
=lim[1/(√x)+(sinx)/x]
x→0
=lim[1/(√x)+1]
x→0
=∞+1
=∞
解释:这是因为比1小的数,开方后变大.
lim[√(x+sinx)]/x
x->0
=lim[√(x+sinx)]/(√x)*(√x)
x->0
=lim[√(1+sinx/x)]/(√x)
x->0
=lim[√2]/(√x)
x->0
=∞
√x+sinx是x的低阶无穷小.
若sinx不再根号内:
lim[(√x)+sinx]/x
x→0
=lim[1/(√x)+(sinx)/x]
x→0
=lim[1/(√x)+1]
x→0
=∞+1
=∞
解释:这是因为比1小的数,开方后变大.