内角:∠P=1/2∠A+90度
外角:∠P=90度-1/2∠A
内外角:∠P=1/2∠A
内角证明:因为BP PC为角平分线
所以∠ABP+∠ACP=∠PBC+∠PCB
因为∠ABC+∠ACB=180-∠A
所以∠PBC+∠PCB=90-1/2∠A
所以∠P=180-90+∠A=90+1/2∠A
绝对正确!
内角:∠P=1/2∠A+90度
外角:∠P=90度-1/2∠A
内外角:∠P=1/2∠A
内角证明:因为BP PC为角平分线
所以∠ABP+∠ACP=∠PBC+∠PCB
因为∠ABC+∠ACB=180-∠A
所以∠PBC+∠PCB=90-1/2∠A
所以∠P=180-90+∠A=90+1/2∠A
绝对正确!