解题思路:(1)连接OD,根据∠CAB的平分线交⊙O于点D,则
CD
=
BD
,依据垂径定理可以得到:OD⊥BC,然后根据直径的定义,可以得到OD∥AE,从而证得:DE⊥OD,则DE是圆的切线;
(2)首先证明△FBD∽△BAD,依据相似三角形的对应边的比相等,即可求DF的长,继而求得答案.
(1)ED与⊙O的位置关系是相切.理由如下:
连接OD,
∵∠CAB的平分线交⊙O于点D,
∴
CD=
BD,
∴OD⊥BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DE∥BC,
∴OD⊥DE,
∴ED与⊙O的位置关系是相切;
(2)连接BD.
∵AB是直径,
∴∠ADB=90°,
在直角△ABD中,BD=
AB2−AD2=
36−25=
11,
∵AB为直径,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD∽△BAD,
∴[FD/BD]=[BD/AD]
∴FD=[11/5]
∴AF=AD-FD=5-[11/5]=[14/5].
点评:
本题考点: 切线的判定;角平分线的性质;勾股定理;相似三角形的判定与性质.
考点点评: 本题考查了切线的判定定理,相似三角形的判定与性质,以及切割线定理,把求AF的长的问题转化成求相似三角形的问题是关键.