令a=sinx
则原式=∫dsinx/(sin²a-6sina+12)
=∫da/[(a-3)²+3]
=1/3*∫da/[(a-3)²/3+1]
=1/3*√3*∫d(a/√3-√3)/[(a/√3-√3)²+1]
=√3/3*arctan(a/√3-√3)+C
=√3/3*arctan(sinx/√3-√3)+C
令a=sinx
则原式=∫dsinx/(sin²a-6sina+12)
=∫da/[(a-3)²+3]
=1/3*∫da/[(a-3)²/3+1]
=1/3*√3*∫d(a/√3-√3)/[(a/√3-√3)²+1]
=√3/3*arctan(a/√3-√3)+C
=√3/3*arctan(sinx/√3-√3)+C