解题思路:分析可得,A、B都是不等式的解集,由不等式的解法,容易解得A、B,进而可得CUA,对其求交集可得答案.
由不等式的解法,
容易解得A={x|x>3或x<0},B={x|2<x<6}.
则CUA={x|0≤x≤3},
于是(CUA)∩B={x|2<x≤3},
故选D.
点评:
本题考点: 交、并、补集的混合运算.
考点点评: 本题考查集合间的交、并、补的混合运算,这类题目一般与不等式、方程联系,难度不大,注意正确求解与分析集合间的关系即可.
解题思路:分析可得,A、B都是不等式的解集,由不等式的解法,容易解得A、B,进而可得CUA,对其求交集可得答案.
由不等式的解法,
容易解得A={x|x>3或x<0},B={x|2<x<6}.
则CUA={x|0≤x≤3},
于是(CUA)∩B={x|2<x≤3},
故选D.
点评:
本题考点: 交、并、补集的混合运算.
考点点评: 本题考查集合间的交、并、补的混合运算,这类题目一般与不等式、方程联系,难度不大,注意正确求解与分析集合间的关系即可.