解题思路:(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.
(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;
(3)基本方法同(2).
(1)EF=FC,90°.
(2)延长CF到M,使CF=FM,连接DM、ME、EC
∵FC=FM,∠BFC=∠DFM,DF=FB,
∴△BFC≌△DFM,
∴DM=BC,∠MDB=∠FBC,
∴MD=AC,MD∥BC,
∵ED=EA,∠MDE=∠EAC=135°,
∴△MDE≌△CAE,
∴ME=EC,∠DEM=∠CEA,
∴∠MEC=90°,
∴EF=FC,EF⊥FC
(3)EF=FC,EF⊥FC.
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;等腰直角三角形.
考点点评: 延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.