证明:
令An={(2n-1)!/(2n)!},
则An+1/An=(2n+2)/(2n+2)根(1×3)
4=(3+5)/2>根(3×5)
......
2n=[(2n-1)+(2n+1)]/2>根[(2n-1)(2n+1)]
将上述不等式相乘,得
2*4*...*(2n)>根(1×3)*根(3×5)*...*根[(2n-1)(2n+1)]
--->0无穷)lim[(2n-1)!/(2n)!]=0.
单调减,un极限为0,则p大于0时,级数条件收敛,
∑[1根(2n+1)]^p当p=2时等价于1/(2n+1),是发散的,
当p