已知a、b、c∈R,求证:a的四次方+b的四次方+c的四次方≥abc(a+b+c)

1个回答

  • 原式=a^4+b^4+c^4

    =1/2(a^4+b^4+b^4+c^4+c^4+a^4)

    =1/2[(a^4-2a^2×b^2+b^4+b^4-2b^2×c^2+c^4-2c^2×a^2+c^4+a^4)+2a^2×b^2+2b^2×c^2+2c^2×a^2]

    =1/2[(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2]+a^2×b^2+b^2×c^2+c^2×a^2

    因为[(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2]≥0

    所以

    原式=a^4+b^4+c^4 ≥a^2×b^2+b^2×c^2+c^2×a^2

    而同理

    a^2×b^2+b^2×c^2+c^2×a^2

    =1/2[a^2×b^2+b^2×c^2+b^2×c^2

    +c^2×a^2+c^2×a^2 +a^2×b^2]

    =1/2[a^2×b^2-2acb^2+b^2×c^2+b^2×c^2-2abc^2

    +c^2×a^2+c^2×a^2 -2bca^2+a^2×b^2+2acb^2+2abc^2+2bca^2]

    =1/2[(ab-bc)^2+(bc-ac)^2+(ac-ab)^2]+acb^2+abc^2+bca^2

    =1/2[(ab-bc)^2+(bc-ac)^2+(ac-ab)^2]+abc(a+b+c)

    因为[(ab-bc)^2+(bc-ac)^2+(ac-ab)^2]≥0

    所以

    a^2×b^2+b^2×c^2+c^2×a^2 ≥abc(a+b+c)