已知函数f(x)=ax^2+1/bx+c(a,b,c属于R)是奇函数,f(1)=2,f(2)=3 (1)求a,b,c的值

1个回答

  • ∵函数f(x)=﹙ax2+1﹚/﹙bx+c﹚(a,b,c∈N)是奇函数

    ∴f﹙﹣x)=[a﹙-x﹚²+1]/[b﹙﹣x﹚+c]≡﹣f(x)=﹣﹙ax2+1﹚/﹙bx+c﹚

    即﹙ax²+1﹚/﹙﹣bx+c﹚≡﹙ax²+1﹚/﹙﹣bx-c﹚

    ∴,c=-c

    ∴c=0

    即f(x)=﹙ax2+1﹚/﹙bx﹚

    ∵f(1)=2,

    ∴﹙a+1﹚/b=2,

    ∴a+1=2b

    f(2)=3

    ∴﹙4a+1﹚/﹙2b﹚=3

    ,4a+1=6b

    ∴a=2,b=3/2

    即f(x)=﹙2x²+1﹚/﹙3/2·x﹚=)=﹙4/3·x²+2/3﹚/x

    设√2/2<x1<x2,则x1-x2<0

    f(x1)-f(x2)=)=﹙4/3x1²+2/3﹚/x1)-﹙4/3x2²+2/3﹚/x2

    =4/3﹙x1-x2﹚+2/3﹙x2-x1﹚/﹙x1x2﹚

    =4/3﹙x1-x2﹚[1-1/﹙2x1x2﹚]

    ∵√2/2<x1<x2

    ∴x1x2>1/2

    ∴0<1/x1x2<2

    ∴0<1/﹙2x1x2﹚<1

    ∴1-1/﹙2x1x2﹚>0

    ∴f(x1)-f(x2)<0

    ∴f(x)=﹙4/3x²+2/3﹚/x当x>√2/2时递增