n(n+1)(2n+1)/6.对(n+1)^3 - n^3 = 3n^2 + 3n + 1求和:
(n+1)^3 - n^3 = 3n^2 + 3n + 1
n^3 - (n-1)^3 = 3(n-1)^2 + 3(n-1) + 1
……
2^3 - 1^3 = 3*1^2 + 3*1 + 1
相加后:(n+1)^3 - 1^3 = 3(1^2 + …… + n^2)+ 3(1+2+ …… + n)+(1+…… +1)
:(n+1)^3 - 1^3 = 3(1^2 + …… + n^2)+ 3(n*(n+1)/2)+n,整理后既得.