设u=y+x^3
有u'=y'+3x^2,因此y'=u'-3x^2
代入方程u-2xu'+6x^3=0
再设v=u/(x^(1/2))
有v'=u'/(x^(1/2))-u/(2x^(3/2))=(2xu'-u)/(2x^(3/2))=3x^(3/2)
解得v=6/5*x^(5/2)+C
故u=6/5*x^3+Cx^(1/2)
最后y=1/5*x^3+Cx^(1/2)
设u=y+x^3
有u'=y'+3x^2,因此y'=u'-3x^2
代入方程u-2xu'+6x^3=0
再设v=u/(x^(1/2))
有v'=u'/(x^(1/2))-u/(2x^(3/2))=(2xu'-u)/(2x^(3/2))=3x^(3/2)
解得v=6/5*x^(5/2)+C
故u=6/5*x^3+Cx^(1/2)
最后y=1/5*x^3+Cx^(1/2)