∵ f′(x)=3x²-3=3(x+1)*(x-1)
∵函数的定义域为[0,2]
∴x∈(0,1),f′(x)<0,x∈(1,2)上f′(x)>0,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
∴ f(x)的最小值是f(1)=m-2
∵ f(0)=m,f(2)=m+2
∴ f(x)的最大值是m+2
根据题意
(1) f(1)=m-2>0即 m>2
(2)f(1)+f(1)>f(2),即-4+2m>2+m,即m>6
综上,m>6
选C
∵ f′(x)=3x²-3=3(x+1)*(x-1)
∵函数的定义域为[0,2]
∴x∈(0,1),f′(x)<0,x∈(1,2)上f′(x)>0,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
∴ f(x)的最小值是f(1)=m-2
∵ f(0)=m,f(2)=m+2
∴ f(x)的最大值是m+2
根据题意
(1) f(1)=m-2>0即 m>2
(2)f(1)+f(1)>f(2),即-4+2m>2+m,即m>6
综上,m>6
选C