(1)S四边形ABCD=AC*BD/2=10*8/2=40,
(2)作DH⊥AC于H,
则∠ODH=30°,OH=OD/2=2,DH=2根号3,
∴S△ACD=AC*DH/2=10根号3,
∴S平行四边形ABCD=2S△ACD=20根号3;
(3)分别作BG⊥AC于G,DH⊥AC于H,
则BG=OB/Sinθ,DH=OD/Sinθ,
S四边形ABCD=S△ACB+S△ACD
=AC*BG/2+AC*DH/2
=AC(BG+DH)/2
=AC(OB*Sinθ+OD*Sinθ)/2
=AC*(OB+OD)*Sinθ/2
=AC*BD*Sinθ/2
=abSinθ/2